Home
Class 11
MATHS
The length of the latus rectum of the pa...

The length of the latus rectum of the parabola whose focus is `((u^2)/(2g)sin2alpha,-(u^2)/(2g)cos2alpha)` and directrix is `y=(u^2)/(2g)` is `(u^2)/gcos^2alpha` (b) `(u^2)/gcos^2 2alpha` `(2u^2)/gcos^2 2alpha` (d) `(2u^2)/gcos^2alpha`

A

`(u^(2))/(g)cos^(2)alpha`

B

`(u^(2))/(g)cos2alpha`

C

`(2u^(2))/(g)cos2alpha`

D

`(2u^(2))/(g)cos^(2)alpha`

Text Solution

Verified by Experts

(4) Length of latus rectum `=2xx` Distance of focus from directrix
`=2|(-(u^(2))/(2g)cos2alpha-(u^(2))/(2g))/(sqrt(1))|`
`=(2u^(2))/(g)cos^(2)alpha`
Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the latus rectum of the parabola whose focus is ((u^(2))/(2)g sin2 alpha,-(u^(2))/(2)g cos2 alpha) and directrixis y=u^(^^)2/2g^(*), is

For the hyperbola (x^(2))/(cos^(2)alpha)-(y^(2))/(sin^(2)alpha)=1;(0

If tanalpha=3, calculate : (2 sin 2alpha-3sin2alpha)/(4 sin2alpha+5cos2alpha) .

To prove ((1)/(sec^(2)alpha-cos^(2)alpha)+(1)/(cos ec^(2)alpha-sin^(2)alpha))cos^(2)alpha sin^(2)alpha=(1-sin^(2)alpha cos^(2)alpha)/(2+sin^(2)alpha cos^(2)alpha)

int(cos alpha)/(a^(2)+sin^(2)alpha)d alpha is equal to

(sin alpha+cos ec alpha)^(2)+(cos alpha+sec alpha)^(2)=tan^(2)alpha+cot^(2)alpha+7

(cos2 alpha)/(cos^(4)alpha-sin^(4)alpha)-(cos^(4)alpha+sin^(4)alpha)/(2-sin^(2)2 alpha)=

sin alpha-sin2 alpha+sin3 alpha=4cos(3 alpha)/(2)cos alpha sin(alpha)/(2)

If the line x cos alpha+y sin alpha=p touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 ,then the point of contact will be ((-a^(2)cos alpha)/(p),(-b^(2)sin alpha)/(p)) ((b^(2)cos alpha)/(p),(a^(2)sin alpha)/(p)) ((b^(2)sin alpha)/(p),(a^(2)cos alpha)/(p)) ( (a^(2)cos alpha)/(p),(b^(2)sin alpha)/(p))