Home
Class 12
MATHS
If the function f(x) defined by f(x)=...

If the function `f(x)` defined by f(x)=`(log(1+3x)-"log"(1-2x))/x `, `x!=0` and k , x=0. Find k.

Promotional Banner

Similar Questions

Explore conceptually related problems

if the function f(x) defined by f(x)= (log(1+a x)-"log"(1-b x))/x , if x!=0 and k if x=0 is continuous at x=0 , find k.

if the function f(x) defined by f(x)=(log(1+ax)-log(1-bx))/(x), if x!=0 and k if x=0 is continuous at x=0, find k

If the function f(x) defined by f(x)={(log(1+a x)-log(1-b x))/x ,\ \ \ if\ x!=0\ \ \ \ \ \ \ \ \ \ \ \ k ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ x=0 is continuous at x=0 , find k .

If the function f(x) defined by f(x)={(log(1+a x)-log(1-b x))/x ,\ \ \ if\ x!=0\ \ \ \ \ \ \ \ \ \ \ \ k ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if\ x=0 is continuous at x=0 , find k .

If the function f(x) defined by f(x)={(log(1+3x)-log(1-2x))/x\ \ \ ,\ \ \ x!=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k ,\ \ \ \ \ \ \ x=0 is continuous at x=0 , then k= (a) 1 (b) 5 (c) -1 (d) none of these

If the function f(x) defined by f(x)={(log(1+3x)-log(1-2x))/x\ \ \ ,\ \ \ x!=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \k\ \ \ \ \ \ \ ,\ \ \ \ \ \ \ x=0 is continuous at x=0 , then k= (a) 1 (b) 5 (c) -1 (d) none of these

If the function f(x) defined by f(x)={((log(1+ax)-log(1-bx))/(k)", if "x!=0),(" k, if "x=0):} is continuous at x=0 , then find the value of k.

Find f(0) if the function defined as f(x) = {:{(log(1+x/a)-log(1-x/b))/x (for x ne 0) , is continuous at x = 0. ab ne 0

If the function f(x)=(log(1+ax)-log(1-bx))/(x) is continuous at x=0, then f(0)=