Home
Class 12
MATHS
If y-axis touches the cirle. x^(2) + y...

If y-axis touches the cirle.
`x^(2) + y^(2) + gx + fy +c/4 = 0` then the normal at this point intersects the circle at the point.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

The circle x^(2) + y^(2) + 2g x + 2fy + c = 0 does not intersect the y-axis if

If the circle x^(2) + y^(2) + 2gx + 2fy + c = 0 does not intersects the X - axis then ……..

Show that the circle S-= x^(2) + y^(2) + 2gx + 2fy + c = 0 touches the (i) X- axis if g^(2) = c

Under which one of the following conditions does the circle x^(2) + y^(2) + 2gx + 2fy +c = 0 meet the x-axis in two points on opposite sides of the origin?

Show that the circle S = x^(2) +y^(2) +2gx +2fy +c=0 touches the y - axis if f^(2) =c

Show that the circle S = x^(2) +y^(2) +2gx +2fy +c=0 touches the X - axis if g^(2) =c

If theline y=x touches the circle x^(2)+y^(2)+2gx+2fy+c=0 at P where OP=6sqrt2 then c=