Home
Class 12
MATHS
If a sectheta = 1 -b tan theta and a^2 s...

If a `sectheta = 1 -b tan theta and a^2 sec^2 theta = 5 + b^2 tan^2 theta,` then (i) `a^2b^2-4a^2=9b^2` (ii) `a^2b^2+4a^2=9b^2` (iii) `a^2b^2+9b^2=4a^2` (iv) `a^2b^2+9b^2=5a^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a sec theta=1-b tan theta and a^(2)sec^(2)theta=5+b^(2)tan^(2)theta then (i)a^(2)b^(2)-4a^(2)=9b^(2)( ii) a^(2)b^(2)+4a^(2)=9b^(2) (iii) a^(2)b^(2)+9b^(2)=4a^(2)( iv )a^(2)b^(2)+9b^(2)=5a^(2)

If a sectheta+b tantheta=1anda^(2)sec^(2)theta-b^(2)tan^(2)theta=5 , then a^(2)b^(2)+4a^(2) is equal to

a sec theta+b tan theta=1,a sec theta-b tan theta=5 then a^(2)(b^(2)+4)

If a sec alpha+ b tan alpha= 1 and a^(2) sec^(2) alpha-b^(2) tan^(2) alpha=5 then 4a^(2)-9b^(2)=

a sec theta + b tan theta = 1, sec theta - b tan theta = 5 rArr a^(2)(b^(2) + 4) =

a sec theta+b tan theta=1,a sec theta-b tan theta=5rArr a^(2)(b^(2)+4)=

If x=a sec theta+b tan theta and y=a tan theta+b sec theta then prove that x^(2)-y^(2)=a^(2)-b^(2)

x = a sec theta + b tan theta and y= a tan theta + b sec theta. Prove that x^(2)-y^(2) = a^(2)-b^(2) .

If x=a sec theta+b tan theta and y=a tan theta+b sec theta, prove that: x^(2)-y^(2)=a^(2)-b^(2)