Home
Class 12
MATHS
int(a)^(b)f(x)dx=int(a)^(b)f(a+b-x)dx. H...

`int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.` Hence evaluate : `int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx.`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a)^(b)f(x)dx=int_(b)^(a)f(x)dx .

If int_(a)^(b)f(x)dx=int_(a)^(b)phi(x)dx , then-

If int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10 , then

If int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10 , then

Prove that int_(a)^(b) f(x)dx= int_(a)^(b) f (a+b-x)dx" hence evaluate " int_(0)^(pi/4) log(1+tan x)dx .

int_(a)^(b)f(x)dx=F(b)-F(a) .

Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx and hence evaluate int_((pi)/(6))^((pi)/(3))(1)/(1+sqrt(tanx))dx.

Prove that int_(a)^(b)(f(x))/(f(x)+f(a+b-x)) dx=(b-a)/(2) .

Prove that: int_a^b(f(x))/(f(x)+f(a+b-x))dx=(b-a)/2