Home
Class 11
MATHS
If costheta=(cosalpha+cosbeta)/(1+cosalp...

If `costheta=(cosalpha+cosbeta)/(1+cosalphacosbeta),\ ` prove that `tantheta/2=\ =-tanalpha/2tanbeta/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If costheta=(cosalpha-cosbeta)/(1-cosalpha.cosbeta) , prove that t a ntheta/2=+-tanalpha/2cotbeta/2 .

(1+cosalphacosbeta)^2-(cosalpha+cosbeta)^2=

If costheta=(cosalpha-cosbeta)/(1-cosalphacosbeta) , then the values of tan(theta/2) is

If costheta=(cosalpha cosbeta)/(1-sinalphasinbeta) , prove that one value of t a ntheta/2=(t a nalpha/2-t a nbeta/2)/(1-t a nalpha/2 t a nbeta/2)

If costheta=(cosalpha-e)/(1-e cosalpha),\ prove that tantheta/2=+-sqrt((1+e)/(1-e))tanalpha/2dot

If costheta=(cosalpha-cosbeta)/(1-cosalphacosbeta) . prove that one of the value of "tan"(theta)/(2) is "tan"(alpha)/(2)"cot"(beta)/(2) .

(cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2 =

Prove that : cos^(-1)((cosalpha+cosbeta)/(1+cosalphacosbeta))=2\ tan^(-1)(tanalpha/2tanbeta/2)

if tanbeta=(nsinalphacosbeta)/(1-nsin^2alpha) then prove that tan(alpha-beta)=(1-n)tanalpha.

If sinalphasinbeta-cosalphacosbeta+1=0 then prove cotalpha tanbeta=-1