Home
Class 12
MATHS
Given four non zero vectors bar a,bar b...

Given four non zero vectors `bar a,bar b,bar c and bar d`. The vectors `bar a,bar b and bar c` are coplanar but not collinear pair by pairand vector `bar d` is not coplanar with vectors `bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta` ,If `(bar d bar c)=cos^-1(mcos beta+ncos alpha)` then `m-n` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If the unit vectors bar(a),bar(b) and bar( c ) are coplanar then [2bar(a)-bar(b),2bar(b)-bar( c ),2bar( c )-bar(a)] = ……

For non -zero vectors a and b if |bar(a)+bar(bar(b))|<|bar(a)-bar(b)|| then bar(a) and bar(b) are

If bar(a),bar(b) and bar( c ) are not coplanar then (bar(a)+bar(b)+bar( c ))*[(bar(a)+bar(b)) times (bar( a )+bar(c))] = ……………

The non-zero vectors bar(a) , bar(b) , bar(c ) holds | (bar(a) .bar(b) ).bar( c) |=| bar(a) ||bar(b)|| bar( c) if

If four vectors bar(a),bar(b),bar(c),bar(d) are coplanar,then (bar(a)xxbar(b))xx(bar(c)xxbar(d))=

(d) answer ANY one question :1. bar a, bar b and bar c be three vectors such that bar a +bar b+ bar c =0 and |bar a|=1, |bar b|=4,|bar c |=2 . Evlautae bar a.bar b + bar b.bar c+bar c.bar a .

If bar(a)bar(b)bar(c ) and bar(d) are vectors such that bar(a) xx bar(b) = bar(c ) xx bar(d) and bar(a) xx bar(c ) = bar(b)xxbar(d) . Then show that the vectors bar(a) - bar(d) and bar(b) -bar(c ) are parallel.

bar(a), bar(b) , bar(c ) are pair wise non zero and non collinear vectors. If bar(a) + bar(b) is collinear with bar(c ) and bar(b) + bar(c ) is collinear with bar(a) then find vector bar(a) + bar(b) + bar(c ) .