Home
Class 12
MATHS
if alpha,beta the roots x^2+x+2=0 and ga...

if `alpha,beta` the roots `x^2+x+2=0` and `gamma , delta` the roots of `x^2+3x+4=0` then find the value of `(alpha+gamma)(alpha+delta)(beta+gamma)(beta+delta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta be the roots of x^(2)+x+2=0 and gamma, delta be the roots of x^(2)+3 x+4=0 , then (alpha+gamma)(alpha+delta)(beta+gamma)(beta+delta) is equal to

If alpha,beta be the roots of x^(2)+x+2=0 and gamma, delta be the roots of x^(2)+3 x+4=0 then (alpha+gamma)(alpha+delta)(beta+gamma)(beta+delta)=

If alpha,beta are the roots x^2+px+q =0 and gamma,delta are the roots of x^2+rx+s =0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in terms of p,q,r and s. Deduce the condition that the equation may have a common root.

If alpha,beta be the roots x^2+px-q=0 and gamma,delta be the roots of x^2+px+r=0, p+rphi0 ,then ((alpha-gamma)(alpha-delta))/((beta-gamma)(beta-delta)) is equal to

If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roots of x^2+r x+s=0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in lterms of p ,q ,r ,a n dsdot Deduce the condition that the equation has a common root.

If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roots of x^2+r x+s=0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in terms of p ,q ,r ,a n dsdot Deduce the condition that the equation has a common root.

If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roots of x^2+r x+s=0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in terms of p ,q ,r ,a n dsdot Deduce the condition that the equation has a common root.

If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roots of x^2+r x+s=0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in lterms of p ,q ,r ,a n dsdot Deduce the condition that the equation has a common root.