Home
Class 6
MATHS
If alpha,beta are the roots of x^(2)+x+3...

If `alpha,beta` are the roots of `x^(2)+x+3=0` then `5 alpha+alpha^(4)+alpha^(3)+3 alpha^(2)+5 beta+3=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of x^(2) + x + 3=0 then 5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=

If alpha, beta are the roots of x^(2) + x + 3=0 then 5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=

If alpha,beta are the roots of 3x^(2)-5x+7=0 then alpha^(3)+beta^(3)=

If alpha , beta are the roots of 3x ^2 -5x+7=0 then alpha ^3 + beta ^3=

If alpha, beta are roots of x^(2)-2x-1=0 , then value of 5alpha^(4)+12beta^(3) is

If alpha and beta are the roots of 2x^(2) - x - 2 = 0 , then (alpha^(3) + beta^(-3) + 2alpha^(-1) beta^(-1)) is equal to

If alpha and beta are the roots of x^2-2x+3=0 then alpha^2beta+ beta^2 alpha =….

If alpha,beta,gamma are the roots of x^(3)+3x+3=0 then alpha^(5)+beta^(5)+gamma^(5)=

If alpha, beta, gamma are the roots of x^(3) + 3x + 3 = 0 , then alpha^(5) + beta^(5) + gamma^(5) =

If alpha,beta and 1 are the roots of x^(3)-2x^(2)-5x+6=0 then (alpha,beta)=