Home
Class 12
MATHS
Let Sk = lim(n rarr oo) sum(i=0)^n 1/(1+...

Let `S_k = lim_(n rarr oo) sum_(i=0)^n 1/(1+k)^i. Then sum_(k=1)^n k S_k` equals :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S_(k)=lim_(n rarr oo)sum_(i=0)^(n)(1)/((1+k)^(i)). Then sum_(k=1)^(n)kS_(k) equals:

Let S_k=underset(nrarrinfty)limsum_(i=0)^n1/(k+1)^i. Then sum_(k=1)^nkS_k equals

Let S_(k)=lim_(n to oo) sum_(i=0)^(n) (1)/((k+1)^(i))." Then " sum_(k=1)^(n) kS_(k) equals

S= lim_(nrarroo) sum_(k=0)^n 1/sqrt(n^2 + k ^2)

lim_ (n rarr oo) sum_ (k = 0) ^ (n) ((1) / (nC_ (k)))

Find the value of sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n k

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k) / (n ^ (2) + k ^ (2)) is equals to