Home
Class 7
MATHS
Prove that (cos x)/(1+sin x)=(cot ((x)/(...

Prove that `(cos x)/(1+sin x)=(cot ((x)/(2))-1)/(cot((x)/(2))+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin 2x)/(1- cos 2x ) = cot x

Prove that: (1+cos4x)/(cot x-tan x)=(1)/(2)sin4x

Prove that (1+ cos x)/(1-cos x) = "(cosec x + cot x)^(2)

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

Prove that: (1+cos4x)/(cot x-tanx)=1/2sin4x

Prove that cos [tan^(-1){(sin(cot^(-1)x}] =((x^(2)+1)/(x^(2)+2)) ^(1/2)

prove that cos tan ^(-1) ""sin cot ^(-1) ""x=((x^(2)+1)/(x^(2)+2))^(1/2)

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that cos (tan^(-1)(sin(cot^-1x))) =sqrt((x^2+1)/(x^2+2))