Home
Class 12
MATHS
If f(x)=int(1)^(x) (log t)/(1+t) dt"then...

If `f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))

Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int_(1)^(x) (log t)/(1+t) dt Then F (e) equals

f(x)= int_(0)^(x) ln ((1-t)/(1+t))dt rArr

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals