Home
Class 8
MATHS
The domain of f(x) = sqrt( 2 {x}^2 - 3 ...

The domain of ` f(x) = sqrt( 2 {x}^2 - 3 {x} + 1)` where {.} denotes the fractional part in [-1,1]

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of f(x)=sqrt(2{x}^(2)-3{x}+1 (where {} denotes the fraction part),in [-1,1] is,

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

The domain of f(x)=(1)/(sqrt(-x^(2)+{x})) (where {.} denotes fractional part of x) is

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

The number of integral values of x in the domain of f(x)=sqrt(3-x)+sqrt(x-1)+log{x}, where {} denotes the fractional part of x, is