Home
Class 12
MATHS
Let O be the origin and let PQR be an ar...

Let `O` be the origin and let PQR be an arbitrary triangle. The point S is such that ` vec O Pdot vec O Q+ vec O Rdot vec O S= vec O Rdot vec O P+ vec O Qdot vec O S= vec O Q` .` vec O R+ vec O Pdot vec O S` Then the triangle PQ has S as its: circumcentre (b) orthocentre (c) incentre (d) centroid

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle OAC, if B is the mid point of side AC and vec O A= vec a , vec O B= vec b , then what is vec O C ?

Let O be the origin and P, Q, R be the points such that vec(PO) + vec(OQ) = vec(QO) + vec(OR) . Then which one of the following is correct?

In a triangle OAC, if B is the mid point of side AC and vec O A= vec a ,\ vec O B= vec b ,\ then what is vec O C ?

Let O be the centre of a regular hexagon A B C D E F . Find the sum of the vectors vec O A , vec O B , vec O C , vec O D , vec O Ea n d vec O F .

Let A B C D be a parallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

Let A B C D be a parallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

Let A B C D be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

Let A B C D be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

Let A B C D be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

Let A B C D be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot