Home
Class 12
MATHS
There exists a positive real number x ra...

There exists a positive real number x ratisfing `cos(tan^-1 )=x` the value of `cos^-1 x^2/2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

There exists a positive real number x satisfying cos(tan^(-1)x)=x . Then the value of cos^(-1)(x^(2)/2) is

There exists a positive real number x satisfying cos(tan^(-1)x)=x . Then the value of "cos"^(-1)((x^(2))/2) is

There exists a positive real number of x satisfying cos(tan^(-1)x)=x. Then the value of cos^(-1)((x^(2))/(2)) is (pi)/(10) (b) (pi)/(5) (c) (2 pi)/(5) (d) (4 pi)/(5)

There exists a positive real number of x satisfying "cos"(tan^(-1)x)=xdot Then the value of cos^(-1)((x^2)/2)i s

There exists a positive real number of x satisfying "cos"(tan^(-1)x)=xdot Then the value of cos^(-1)((x^2)/2)i s

There exists a positive real number of x satisfying "cos"(tan^(-1)x)=xdot Then the value of cos^(-1)((x^2)/2)i s pi/(10) (b) pi/5 (c) (2pi)/5 (d) (4pi)/5

There exists a positive real number of x satisfying "cos"(tan^(-1)x)=xdot Then the value of cos^(-1)((x^2)/2)i s pi/(10) (b) pi/5 (c) (2pi)/5 (d) (4pi)/5

There exists a positive real number x satisfying cos ( tan^(-1)x) = x . The number value of cos^(-1) (x^(2)/2) is

Let cos(2 tan^(-1) x)=1/2 then the value of x is