Home
Class 9
MATHS
[x]^2=[x+2]...

`[x]^2=[x+2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

det [[x + 4,2x, 2x2x, x + 4,2x2x, 2x, x + 4]]

Prove the following : [[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]]-(5x+4)(4-x)^2

|[x+4,2x,2x] , [2x,x+4,2x] , [2x,2x,x+4]|=(5x+4)(x-4)^2

By using properties of determinants, prove that |[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]|=(5x+4)(4-x)^2

Prove that: |[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]|=(5x+4)(4-x)^2 .

By using properties of determinants, show that : |[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]| = (5x+4)(4-x)^2

|[x+lambda, 2x, 2x], [2x, x+lambda, 2x], [2x, 2x, x+lambda]| =(5x+ lambda)(lambda-x)^(2)

|x^(2)-3x+2|>(x^(2)-3x+2)

(x-2)^(2),(x-1)^(2),x^(2)(x-1)^(2),x^(2),(x+1)^(2)x^(2),(x+1)^(2),(x+2)^(2)]|=-8

(x-2)^(2),(x-1)^(2),x^(2)(x-1)^(2),x^(2),(x+1)^(2)x^(2),(x+1)^(2),(x+2)^(2)]|=