Home
Class 12
MATHS
If |z1|!=1,|(z1-z2)/(1- bar z1z2)|=1, t...

If `|z_1|!=1,|(z_1-z_2)/(1- bar z_1z_2)|=1`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2) two different complex numbers and |z_(2)|=1 then prove that |(z_(2)-z_(1))/(1-bar(z)_(1)z_(2))|=1

If z_1 and z_2 are two complex numbers for which |(z_1-z_2)(1-z_1z_2)|=1 and |z_2|!=1 then (A) |z_2|=2 (B) |z_1|=1 (C) z_1=e^(itheta) (D) z_2=e^(itheta)

If z_1 and z_2 are two complex numbers for which |(z_1-z_2)(1-z_1z_2)|=1 and |z_2|!=1 then (A) |z_2|=2 (B) |z_1|=1 (C) z_1=e^(itheta) (D) z_2=e^(itheta)

If z_1 , z_2 are nonreal complex and |(z_1+z_2)/(z_1-z_2)| =1 then (z_1)/(z_2) is

If |z_(1)|=2,(1-i)z_(2)+(1+i)bar(z)_(2)=8sqrt(2) , ( z_(1),z_(2) are complex variables) then the minimum value of |z_(1)-z_(2)| ,is

If z_1= 2 -i, z_2= 1+ i , find |(z_1+z_2+1)/(z_1-z_2+1)| .

Let |(( bar z _1)-2( bar z _2))//(2-z_1( bar z _2))|=1 and |z_2|!=1 ,where z_1 and z_2 are complex numbers. Show that |z_1|=2.

Let |(( bar z _1)-2( bar z _2))//(2-z_1( bar z _2))|=1 and |z_2|!=1 ,where z_1 and z_2 are complex numbers. Show that |z_1|=2.