Home
Class 11
MATHS
" Applying LHospital's rule to find the ...

" Applying LHospital's rule to find the value of "lim_(x rarr0)(e^(x+e^(-x)-2cos x))/(sin x)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)=

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)

Evaluate: lim_(x rarr0)(e^(x)-e^(x cos x))/((x+sin x))

lim_(x rarr0)(e^(x)-e^(sin x))/(2(x-sin x))=

lim_(x rarr0)(e^(x)-e^(sin x))/(2(x-sin x))=

The value of lim_(x rarr 0) ((e^(x)-1)/x)

lim_(x rarr0)(e^(x)-e^(sin x))/(x-sin x)

The value of lim_(x rarr0)(e^(x)-x-1)/(cos x-1) is

The value of lim_(x rarr0)(e^(x)-1)/(x) is-