Home
Class 12
MATHS
cos^(-1)(p/a) + cos^(-1) (q/b) =alpha th...

`cos^(-1)(p/a) + cos^(-1) (q/b) =alpha` then `p^2/a^2-(2pq)/(ab)+q^2/b^2` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If "Cos"^(-1)P/a+"Cos"^(-1)q/b=alpha , then prove that (p^(2))/(a^(2))-(2pq)/(ab).cos alpha+(q^(2))/(b^(2))=sin^(2)alpha

If cos^(-1)((p)/(a))+cos^(-1)((q)/(b))=alpha and (p^(2))/(a^(2))+k cos alpha+(q^(2))/(b^(2))=sin^(2)alpha then k=

If cos^(-1)p+cos^(-1)q+cos^(-1)r=pi then p^(2)+q^(2)+r^(2)+2pqr =

If cos^(-1)p+cos^(-1)q+cos^(-1)r=3pi , then p^(2)+q^(2)+r^(2)+2pqr is equal to

If cos^(-1) p+ cos^(-1) q + cos^(-1) r =pi , then : p^2+q^2+r^2+ 2pqr is :

x=sqrt(a^(2)cos^(2)alpha+b^(2)sin^(2)alpha)+sqrt(alpha^(2)sin^(2)alpha+b^(2)cos^(2)alpha) then x^(2)=alpha^(2)+b^(2)+2sqrt(p(a^(2)+b^(2))-p^(2)) , where p is equal to