Home
Class 12
MATHS
If F(x)=int ((1+sinx)/(1+cosx)) dx and F...

If `F(x)=int ((1+sinx)/(1+cosx)) dx` and F(0) = 0, then the value of F(`pi`/2) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int(dx)/((1+x^2)^ (3/2) and f(0)=0 then what is the value of f(1)?

If f(x)=(1+sinx-cosx)/(1-sinx-cosx), x ne 0 . The value of f(0) so that f is a continuous function is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

If A=f(x)=[(cosx, sinx, 0),(-sinx, cosx,0),(0,0,1)], then the value of A^-1= (A) f(x) (B) -f(x) (C) f(-x) (D) -f(-x)

If int_(0)^( pi)f(x)dx=pi+int_(pi)^(1)f(t)dx, then the value of (L) is :

If int_0^(a) f(x) dx = int_0^(a) f(a-x) dx , then the value of int_0^(pi) x. f(sin x) dx =

If int_(0)^(pi) x f(sinx) dx=A int_(0)^((pi)/(2))f(sinx)dx , then the value of A is -

int_0^(pi/2) (cosx-sinx)/(1+sinx cosx) dx =