Home
Class 12
MATHS
If A+B+C=pi, prove that : (sin 2A+sin 2B...

If `A+B+C=pi`, prove that : `(sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sin(A/2) sin(B/2)sin(C/2)

If A+B+C=pi , prove that sin 2A+sin 2B+sin 2C=4 sinA sin B sinC.

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sinA/2 sinB/2sinC/2

If A + B + C =pi , prove that : (sin 2A + sin 2B + sin 2C)/(sin A + sin B +sin C)= 8 sin frac (A)(2) sin frac (B)(2) sin frac (C)(2) .

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A + B + C = pi , prove that sin 2A + sin 2B + sin 2C= 4 sin A sin B sin C

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C