Home
Class 12
MATHS
|f^(x^(2005))+(1)/(1+sin^(2)x)=2005" the...

|f^(x^(2005))+(1)/(1+sin^(2)x)=2005" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

Using intermediate value theorem,prove that there exists a number x such that x^(2005)+(1)/(1+sin^(2)x)=2005

Using intermediate value theorem, prove that there exists a number x such that x^(2005)+1/(1+sin^2x)=2005.

Using intermediate value theorem, prove that there exists a number x such that x^(2005)+1/(1+sin^2x)=2005.

Using intermediate value theorem, prove that there exists a number x such that x^(2005)+1/(1+sin^2x)=2005.

If the function f: R-{(2005)/(153)}vecR-{(2005)/(153)} , defined by f(x)=(2005 x+153)/(153 x-2005) , then- (a) f^(-1)(x)=f(x) (b) f^(2014)(x)=x ,w h e r ef^n(x)=f(f(f(x)))n brackets (c)( f^(2013)(x)=x ,w h e r ef^n(x)=f(f(f(x)))n brackets (d) f^(-1)(x)=-f(x)

(2005)^(2)-(1995)^(2)= ?

if a=(7+4sqrt(3))^(2005) and b=(7-4sqrt(3))^(2005) then (a+1)^(-1)+(b+1)^(-1)

If z-(1)/(z)=i then z^(2005)+(1)/(z^(2005))=+-sqrt(k) then k is

The digit in the unit place in the number (19)^(2005)+(11)^(2005)-(9)^(2005) is