Home
Class 12
MATHS
If I=int(sinx+sin^3x)/(cos2x) dx=Pcosx+Q...

If `I=int(sinx+sin^3x)/(cos2x) dx`=`Pcosx+Q log|f(x)|+R`,then

Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int(sinx+sin^3x)/(cos2x)dx=Pcosx+Qlog|f(x)|+R , then (a) P=1/2,Q=-3/(4sqrt(2)) (b) P=1/4, Q=1/(sqrt(2)) (c) f(x)=(sqrt(2)cosx+1)/(sqrt(2)cosx-1) (d) f(x)=(sqrt(2)cosx-1)/(sqrt(2)cosx+1)

If I=int(sinx+sin^3x)/(cos2x)dx=Pcosx+Qlog|f(x)|+R , then (a) P=1/2,Q=-3/(4sqrt(2)) (b) P=1/4, Q=1/(sqrt(2)) (c) f(x)=(sqrt(2)cosx+1)/(sqrt(2)cosx-1) (d) f(x)=(sqrt(2)cosx-1)/(sqrt(2)cosx+1)

If I=int(sin x+sin^(3)x)/(cos2x)dx=P cos x+Q log|f(x)|+R then (a)P=(1)/(2),Q=-(3)/(4sqrt(2))(b)P=(1)/(4),Q=(1)/(sqrt(2)) (c) f(x)=(sqrt(2)cos x+1)/(sqrt(2)cos x-1)(d)f(x)=(sqrt(2)cos x-1)/(sqrt(2)cos x+1)

If I=int (sin x + sin^(3)x)/(cos 2x) dx= A cos x + B log |f(x) |+c , then-

If I = int (sin x + sin^3 x)/(cos 2x) dx = A cos x + B log abs(f(x)) + c , then find A, B, f(x).

int sin x log(cos x)dx

int(ln(1+sin^(2)x))/(cos^(2)x)dx

int(cos x +sinx)/(sin x-cos x)dx

I=inte^(cosx-sinx)(sin x+cos x)dx