Home
Class 12
MATHS
Prove that ^10P3=^9P3+3.^9P2...

Prove that `^10P_3=^9P_3+3.^9P_2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1)8P_(3)=7P_(3)+3.7P_(2) and (2)9P_(4)+4.9P_(4)=10P_(4)

Prove that P(10,3)=P( 9,3) +3P ( 9,2)

Prove that ""^(9)P_(3)+3xx""^(9)P_(2)=""^(10)P_(3).

Prove that : (i) ""^(n)P_(n)=2""^(n)P_(n-2) (ii) ""^(10)P_(3)=""^(9)P_(3)+3""^(9)P_(2) .

Prove that ^9p_5+5^9p_4 = (10!)/(5!)

"is"^(10)P_(3)= ""^(9)P_(2)+3""^(9)P_(3) ?.

If the roots of the equation x^(3) - px^(2) + qx - r = 0 are in A.P., then prove that, 2p^3 −9pq+27r=0

If p=2-a , prove that a^3+6a p+p^3-8=0

If p=2-a , prove that a^3+6a p+p^3-8=0

For all nge1 , prove that p(n):n^3+(n+1)^3+(n+2)^3 is divisible by 9.