Home
Class 11
MATHS
If l = lim(a-> oo) sum(r=2)^a [ (r+1...

If ` l = lim_(a-> oo) sum_(r=2)^a [ (r+1) sin (pi/(r+1)) - r sin (pi/r)]` then find `{l}` where ,{} denotes the fractional part.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) sum_ (r = 2) ^ (n) ((r + 1) (sin pi) / (r + 1) -r (sin pi) / (r))

lim_(n to oo) sum_(r = 1)^(n) 1/n sin(r pi)/(2pi) is :

sum_(r =1)^(16) ( sin [(2r pi)/(17)] + icos [(2rpi)/(17)] ) =

lim_ (x rarr oo) sum_ (r = 0) ^ (n) ((1) / ((r + 2) n ^ (r)) =

Evaluate: lim_(n rarr oo) (sum_(r=0)^( n) (1)/(2^(r))) .

lim_(x->oo ){(e^x+pi^x)^(1/x)}= where {.} denotes the fractional part of x is equal to

lim_(x->oo ){(e^x+pi^x)^(1/x)}= where {.} denotes the fractional part of x is equal to

value of lim_ (n rarr oo) sum_ (r = 1) ^ (n) tan ^ (- 1) ((1) / (2r ^ (2))) is

Evaluate lim _( n to oo) sum_( r =1) ^(n -1) (1)/(sqrt(n ^(2) -r ^(2)))