Home
Class 12
MATHS
If [dot] denotes the greatest integer fu...

If `[dot]` denotes the greatest integer function, then find the value of `("lim")_(xvec0)` `([x]+[2x]++[n x])/(n^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If [dot] denotes the greatest integer function, then find the value of lim_(x->0) ([x]+[2x]++[n x])/(n^2)

If [dot] denotes the greatest integer function, then find the value of lim_(x->0) ([x]+[2x]++[n x])/(n^2)

If [.] denotes the greatest integer function, then find the value of lim_(x rarr0)([x]+[2x]+...+[nx])/(n^(2))

If [.] denotes the greatest integer function then find the value of lim_(n rarr oo)([x]+[2x]+...+[nx])/(n^(2))

If [dot] denotes the greatest integer function, then (lim)_(xvec0)x/a[b/x] b/a b. 0 c. a/b d. does not exist

If [dot] denotes the greatest integer function, then (lim)_(xvec0)x/a[b/x] a. b/a b. 0 c. a/b d. does not exist

Given ("lim")_(xvec0)(f(x))/(x^2)=2, \where\ [dot] denotes the greatest integer function, then (A) ("lim")_(xvec0)[f(x)]=0 (B) ("lim")_(xvec0)[f(x)]=1 (C) ("lim")_(xvec0)[(f(x))/x] does not exist (D) ("lim")_(xvec0)[(f(x))/x] exists

Given ("lim")_(xvec0)(f(x))/(x^2)=2,w h e r e[dot] denotes the greatest integer function, then (a) ("lim")_(xvec0)[f(x)]=0 (b) ("lim")_(xvec0)[f(x)]=1 (c) ("lim")_(xvec0)[(f(x))/x] does not exist (d) ("lim")_(xvec0)[(f(x))/x] exists

Let f(x)=[(sinx)/x]+[(2sin2x)/x]++[(10sin10 x)/x] (where [.] is the greatest integer function) Then the value of ("lim")_(xvec0)f(x) equals 55 (b) 164 (c) 165 (d) 375

Column I ([.] denotes the greatest integer function), Column II ""("lim")_(xvec0)([100(sinx)/x]+[100(tanx)/x]) , p. 198 ("lim")_(xvec0)([100 x/(sinx)]+[100(tanx)/x]) , q. 199 ("lim")_(xvec0)([100(sin^(-1)x)/x]+[100(tan^(-1)x)/x]) , r. 200 ("lim")_(xvec0)([100 x/(sin^(-1)x)]+[100(tan^(-1)x)/x]) , s. 201