Home
Class 12
MATHS
" h) "[((dy)/(dx))^(2)+(d^(2)y)/(dx^(2))...

" h) "[((dy)/(dx))^(2)+(d^(2)y)/(dx^(2))]^(7/3)=(d^(3)y)/(dx^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the order and degree of the following D.E's (i) (d^(2)y)/(dx^(2)) + 2((dy)/(dx))^(2) + 5y = 0 (ii) 2(d^(2)y)/(dx^(2)) = (5+(dy)/(dx))^((5)/(3)) (iii) 1+((d^(2)y)/(dx^(2)))^(2) = [2+((dy)/(dx))^(2)]^((3//2)) (iv) [(d^(2)y)/(dx^(2))+((dy)/(dx))^(3)]^((6/(5)) = 6y (v) [((dy)/(dx))^(2) + (d^(2)y)/(dx^(2))]^((7)/(3)) = (d^(3y))/(dx^(3)) (vi) [((dy)/(dx))^((1)/(2)) + ((d^(2)y)/(dx^(2)))^((1)/(2))]^((1)/(4)) = 0 (vii) (d^(2)y)/(dx^(2)) + p^(2)y = 0 (viii) ((d^(3)y)/(dx^(3)))^(2) -3((dy)/(dx))^(2) - e^(x) = 4

The order and degree of the differential equation [((dy)/(dx))^(2) + ((d^(2)y)/(dx^(2)))]^(5//4) = k (d^(3) y)/(dx^(3)) is

find the order and degree of D.E : (1) ((d^(2)y)/(dx^(2) ))^2 + ((dy)/(dx))^(3) = e^(x) (2) sqrt(1 + 1/((dy)/(dx))^(2))= ((d^(2)y)/(dx^(2)))^(3/2) (3) e^((dy)/(dx))+ (dy)/(dx) =x

The order and degree of the differential equation [((d^(2)y)/(dx^(2)))+((dy)/(dx))^(2)]^((1)/(2))=(d^(3)y)/(dx^(3)) are

(d^(2)x)/(dy^(2)) equals: (1)((d^(2)y)/(dx^(2)))^(-1) (2) -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3)(3)-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-2)(4)-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(3)

(d^(2)x)/(dy^(2)) equals a. ((d^(2)y)/(dx^(2)))^(-1) b. -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3) c. ((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2) d. -((d^(2)y)/(dx^(2)))((dy)/(dx))^(-3)

y=x^(3)-4x^(2)+5 . Find (dy)/(dx) , (d^(2) y)/(dx^(2)) and (d^(3)y)/(dx^(3)) .

Write the degree of the differential equation : y.(d^(2)y)/(dx^(2)) + ((dy)/(dx))^(3) = x((d^(3)y)/(dx^(3)))^(2) .

Find the order and degree of the D.E ((d^(3)y)/(dx^(3)))^(2)+((d^(2)y)/(dx^(2)))^(3)+(dy)/(dx)+y=0

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^(-1) (2) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3) (3) ((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-2) (4) -((d^2y)/(dx^2))((dy)/(dx))^(-3)