Home
Class 10
MATHS
(v)|[cos theta,-sin theta],[sin theta,co...

(v)|[cos theta,-sin theta],[sin theta,cos theta]|

Promotional Banner

Similar Questions

Explore conceptually related problems

" (1) "|[cos theta,-sin theta],[sin theta,cos theta]|

Evaluate |[cos theta, -sin theta], [sin theta, cos theta]|

Simplify, costheta[[cos theta, sin theta],[-sin theta, cos theta]] + sin theta [[sin theta, -cos theta],[cos theta, sin theta]]

Simplify: cos theta[[cos theta , sin theta],[-sin theta , cos theta]]+sin theta[[sin theta, -cos theta],[cos theta ,sin theta]] .

The inverse of A=[[cos theta, sin theta],[-sin theta,cos theta]] is :

If A = [[cos theta, sin theta],[-sin theta, cos theta]] , then what is A^(-1) ?

(i) |(cos theta,-sin theta),(sin theta,cos theta)|

Verify that [(cos theta, sin theta),(-sin theta, cos theta)] and [(cos theta, - sin theta),(sin theta, cos theta)] are inverse of each other.

Evaluate the following determinants: (b) |(cos theta, -sin theta),(sin theta, cos theta)| = cos theta (cos theta) - sin theta(-sin theta) = cos^(2) theta + sin^(2) theta = 1

If A= [[cos theta,-sin theta],[sin theta,cos theta]] ,then Adj A is (a) [[cos theta,-sin theta],[cos theta,sin theta]] (b) [[1,0],[0,1]] (c) [[cos theta,sin theta],[-sin theta,cos theta]] (d) [[-1,0],[0,-1]]