Home
Class 10
MATHS
[qquad [(del x-18)/(1),y=(ax^(2))/((x-a)...

[qquad [(del x-18)/(1),y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/((x-c))+1],[,p*r rArr(dy)/(dx)=(y)/(x)int(a)/(a-x)+(b)/(b-x)+(c)/(c-x)}]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/( (x-b)(x-c))+(c )/(x-c) +1 , prove that (dy)/(dx) =(y)/(x) [(a)/( a-x)+(b)/(b-x)+(c )/(c-x)]

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 find (dy)/(dx)

If y= (ax^(2))/((x-a)(x-b) (x-c)) + (bx)/((x-b) (x-c))+ (c )/((x-c)) + 1 then prove that (y')/(y)= (1)/(x) [(a)/(a-x) + (b)/(b-x) + (c)/(c-x)]

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 then prove that (y')/(y)=(1)/(x)[(a)/(a-x)+(b)/(b-x)+(c)/(c-x)]

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 then (y')/(y)=

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

(x^(4))/((x-a)(x-b)(x-c))=P(x)+(A)/(x-a)+(B)/(x-b)+(C)/(x-c)rArr P(x)=