Home
Class 12
MATHS
[x+y+z=2],[2x+3y+2z=5],[2x+3y+(a^(2)-1)z...

[x+y+z=2],[2x+3y+2z=5],[2x+3y+(a^(2)-1)z=a+1]

Promotional Banner

Similar Questions

Explore conceptually related problems

4x -5y-11z=12,. x-3y+z=1 2x + 3y-7z = 2

solve 3x - 2y + z = 1 2x + y- 5z = 2 x- y - 2z = 3.

x+2y-3z=0,3x+3y-z=5,x-2y+2z=1

2x + 3y-5z = 7, x + y + z = 6,3x-4y + 2z = 1, then x =

Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

|[yz,x,x^(2)],[zx,y,y^(2)],[xy,z,z^(2)]|=|[1,x^(2),x^(3)],[1,y^(2),y^(3)],[1,z^(2),z^(3)]|

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

Examine the consistency of the system of equations x + y + z = 1 2x + 3y + 2z = 2 a x + a y + 2a z = 4

The system 2x + 3y + z= 5, 3x + y + 5z =7, x + 4y -2z=3 has

2x+3y+3z=5 x-2y+z=-4 3x-y-2z=3