Home
Class 11
MATHS
[log(log x)+log(log x^(4)-3)=0],[(2log x...

[log(log x)+log(log x^(4)-3)=0],[(2log x)/(log(5x-4))=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

Equation log(log x)+log(log x^(4)-3)=0 has

simplify: log(log x^(4))-log(log x)

Solve for x, (a) (log_(10)(x-3))/(log_(10)(x^(2)-21))=(1)/(2),(b)log(log x)+log(log x^(3)-2)=0; where base of log is 10 everywhere.

Solve for x : 3^(log x)-2^(log x) =2^(log x+1)-3^(log x-1)

log(5+4x)=2log x

Solve for x: a) log_(x)2. log_(2x)2 = log_(4x)2 b) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3.

Evaluate lim_(x rarr-1)(log x^(2)-log((1)/(x^(4)))+log3)/(log((x^(3))/(-3)))

State, true or false : (i) log 1 xx log 1000 = 0 (ii) (log x)/(log y) = log x - log y (iii) If (log 25)/(log 5) = log x , then x = 2 (iv) log x xx log y = log x + log y

If log_2(log_3(log_4(x)))=0, log_3(log_4(log_2(y)))=0 and log_4(log_2(log_3(z)))=0 then the sum of x,y,z is