Home
Class 11
MATHS
If a= cos((2pi)/7)+isin((2pi)/7) , alpha...

If `a= cos((2pi)/7)+isin((2pi)/7) , alpha= a+a^2+a^4`,and` beta =a^3+a^5+a^6` then `alpha ,beta ` are the roots of the equation

Promotional Banner

Similar Questions

Explore conceptually related problems

IF a = cos ( (2 pi ) /(7)) + isin ((2pi)/(7)) , alpha = a + a^2+a^4 and beta = a^3+a^5+a^6 then alpha , beta are the roots of the equation

If a=(cos(2 pi))/(7)+i(sin(2 pi))/(7),alpha=a+a^(2)+a^(4),beta=a^(3)+a^(5)+a^(6) then alpha,beta are the roots of the equation

Assertion (A) : If alpha=cos((2pi)/(7))+isin((2pi)/(7)),p=alpha+alpha^2+alpha^4,q=alpha^3+alpha^5+alpha^6 then the equation whose roots are p and q is x^2+x+2=0 Reason (R) : If alpha is a roots of z^7=1 then 1+alpha+alpha^2+…...+alpha^6=0

If alpha=cos ((2pi)/5)+isin((2pi)/5) , then find the value of alpha+alpha^2+alpha^3+alpha^4

If a=cos((2pi)/7)+i sin((2pi)/7) , then find the quadratic equation whose roots are alpha=a+a^2+a^4 and beta=a^3+a^5+a^7 .

If a=cos(2pi//7)+isin(2pi//7) , then find the quadratic equation whose roots are alpha=a+a^2+a^4 and beta=a^3+a^5+a^6 .

if a=cos(2pi//7)+isin(2pi//7) , then find the quadratic equation whose roots are alpha=a+a^2+a^4 and beta=a^3+a^5+a^6 .

if a=cos(2pi//7)+isin(2pi//7) , then find the quadratic equation whose roots are alpha=a+a^2+a^4 and beta=a^3+a^5+a^6 .