Home
Class 14
MATHS
" (b) "cos A+cos B+cos C=1+4sin(A)/(2)si...

" (b) "cos A+cos B+cos C=1+4sin(A)/(2)sin(B)/(2)sin(C)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

If A + B + C = pi , prove that cos A + cos B + cos C= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

If A + B + C = pi then prove that cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)

Theorem 3:cos A+cos B+cos C=1+4(sin A)/(2)(sin B)/(2)(sin C)/(2)

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)

If A + B + C = 180^(@) , prove that cos A + cos B - cos C = -1 + 4 cos (A)/(2) cos"" (B)/(2) sin"" (C )/(2)