Home
Class 12
MATHS
" If "u=int(x^((0)/(x^(4))+7x^(2)+1))^(o...

" If "u=int_(x^((0)/(x^(4))+7x^(2)+1))^(oo)" and "v=int_((j)/(x^(4)+7x^(2)+1))^(x^(2)*dx)" ,then "

Promotional Banner

Similar Questions

Explore conceptually related problems

int((x^(2) +1))/(x^(4) + 7x^(2) + 1) dx =

int((x^(2)+1))/(x^(4)+7x^(2)+1)dx=

Let u=int_(0)^(oo)(dx)/(x^(4)+7x^(2)+1) and v=int_(0)^(x)(x^(2)dx)/(x^(4)+7x^(2)+1) then

int(2x^(4)+7x^(3)+6x^(2))/(x^(2)+2x)dx

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^x (x^2dx)/(x^4+7x^2+1) then

" If I=int_(0)^(1)(1-x^(4))^(7)dx and J=int_(0)^(1)(1-x^(4))^(6)dx then (I)/(J)

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then

int_(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=