Home
Class 14
MATHS
" U Prove that "cos tan^(-1)sin(cot^(-1)...

" U Prove that "cos tan^(-1)sin(cot^(-1)n=sqrt((n^(2))/(1n^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((1+x^2)/(2+x^2) .

Prove that cos (tan^(-1)(sin(cot^-1x))) =sqrt((x^2+1)/(x^2+2))

Prove that cos[Tan^(-1){sin(Cot^(-1)x)}] = sqrt((x^(2)+1)/(x^(2)+2))

Prove that cos[tan^(-1). {sin (cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2))) .

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

tan^(-1)n+cot^(-1)(n+1)=tan^(-1)(n^(2)+n+1)