Home
Class 12
MATHS
f(x)=sqrt(sin^(-1)(2x)+pi/6)" -ìuês sùti...

f(x)=sqrt(sin^(-1)(2x)+pi/6)" -ìuês sùtit."

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function given by f(x)=sqrt(sin^(-1)(2x)+pi/6) is

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real-valued x is

Domain of sqrt(sin^(-1)(2x) + pi/6) is

Domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real valued of x, is

Domain of definition of the function : f(x)=sqrt(sin^(-1)(2x)+(pi)/(6)) for real valued x, is :

If f(x)=(sin^(-1)x+tan^(-1)x)/(pi)+2sqrt(x), then the range of f(x) is

Let f:[-(pi)/(3),(2 pi)/(3)]rarr[0,4] be a function defined as f(x)=sqrt(3)sin x-cos x+2. Then f^(-1)(x) is given by sin^(-1)((x-2)/(2))-(pi)/(6)sin^(-1)((x-2)/(2))+(pi)/(6)(2 pi)/(3)+cos^(-1)((x-2)/(2))(d) none of these

The area bounded by f(x)=sin^(-1)(sinx) and g(x)=pi/2-sqrt(pi^(2)/2-(x-pi/2)^(2)) is

The area bounded by f(x)=sin^(-1)(sinx) and g(x)=pi/2-sqrt(pi^(2)/2-(x-pi/2)^(2)) is