Home
Class 10
MATHS
" If "(cosec A+cot A)=m" then prove that...

" If "(cosec A+cot A)=m" then prove that "(m^(2)-1)/(m^(2)+1)=cos theta

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosec A + cot A =m , show that (m^(2) -1)/(m^(2)+1) = cos A .

If cosec theta + cot theta =k , then prove that cos theta =(k^(2)-1)/( k^(2)+1)

If cosec theta + cot theta =k , then prove that cos theta =(k^(2)-1)/( k^(2)+1)

If cosec theta + cot theta =k , then prove that cos theta =(k^(2)-1)/( k^(2)+1)

If cosec theta + cot theta =k , then prove that cos theta =(k^(2)-1)/( k^(2)+1)

If cosec theta + cot theta =k , then prove that cos theta =(k^(2)-1)/( k^(2)+1)

If cos A = m cos B, then prove that cot frac (A+B)(2)= (m+1)/(m-1) tan ((B-A)/2) .

If cot theta + cos theta = m and cot theta - cos theta = n then prove that: m^(2) - n^(2) = 4sqrt(mn)

If sin theta + cos theta = m and sec theta + "cosec" theta = n, prove that n(m^(2)-1) = 2m.

If cos A=m cos B then prove that cot((A+B)/(2))=(m+1)/(m-1)tan((B-A)/(2))