Home
Class 12
MATHS
If A=[{:(cosx,sinx,0),(-sinx,cosx,0),(0,...

If `A=[{:(cosx,sinx,0),(-sinx,cosx,0),(0,0,1):}]` =f(x), then `A^(-1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Select and write the correct answer from the given alternatives in each of the following:If f(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] then f(x+y) is equal to

If f(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] Find f(-x)

If f(x)=[{:(cosx,-sinx,0),(sinx,cosx,0),(0,0,1):}] , then show that f(x)*f(y)=f(x+y) .

If F(x)=[{:(cosx,-sinx,0),(sinx,cosx,0),(0,0,1):}] ,show that F(x)F(y)=F(x+y) .

If A=f(x)=[(cosx, sinx, 0),(-sinx, cosx,0),(0,0,1)], then the value of A^-1= (A) f(x) (B) -f(x) (C) f(-x) (D) -f(-x)

If F(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)] , show that F(x) F(y)=F(x+y) .

If F(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)] , show that F(x) F(y)=F(x+y) .

If F(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)] , show that F(x) F(y)=F(x+y) .

f(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)] Statement 1: f(x) is inverse of f(-x) Statement 2: f(x).f(y) = f(x+y)