Home
Class 12
MATHS
If vec(OA) = 3 i + j - k,|vec(AB)|=2sqrt...

If `vec(OA) = 3 i + j - k`,`|vec(AB)|=2sqrt(6)` and AB has the direction ratios (1,-1,2) then |OBl is

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec OA=3hat i+hat j-hat k|vec AB|=2sqrt(6) and AB has the direction ratios 1,-1, and 2 then |OB| is

If OA=3i+j-k,|AB|=(2)/(sqrt(6)) and AB has the direction ratios 1,-1,2 then |OB|

If vec(OA) = hati - 2hatk and vec(OB) = 3 hati - 2hatj then the direction cosines of the vectore vec(AB) are

If vec(A) = 3 hat(i) + 6 hat(j) - 2hat(k) , the directions of cosines of the vector vec(A) are

If vec(OA)=hat(i)-2hat(k) " and " vec(OB)=3hat(i)-2hat(j) then the direction cosines of the vector vec(AB) are -

If vec(AB) = 3hat(i) + 2hat(j) + 6hat(k), vec(OA) = hat(i) - hat(j) - 3hat(k) , find the value of vec(OB) .

If vec(A) = 2 I + j - k , vec(B) = I + 2 j + 3 k , and vec(C ) = 6 i - 2 j - 6 k ,then the angle between (vec(A) + vec(B)) and vec(C ) will be

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

The position vectors of the points A and B are vec i + 2 vec j + 3 vec k and 2 vec i - vec j - vec k respectively. Find the projection of vec (AB) on the vector vec i + vec j + vec k . Also find the resolved part of vec (AB) in that direction.