Home
Class 11
MATHS
[" If the function "f:R rarr R" is defin...

[" If the function "f:R rarr R" is defined by "f(x)=(3^(x))/(10)],[" then show that "f(x+y)+f(x-y)=2f(x)f(y)]

Promotional Banner

Similar Questions

Explore conceptually related problems

" If the function "f:R rarr R" defined by "f(x)=(3^(x)+3^(-x))/(2)," then show that "f(x+y)+f(x-y)=2f(x)f(y)"

If the function f:R rarr R defined by f(x)=(3^(x)+3^(-x)) , then show that f(x+y) = f(x-y) = 2f(x)f(y) .

the function f:R rarr R defined as f(x)=x^(3) is

The function f:R rarr R defined as f(x) = x^3 is:

If the function f: R to R defined by f(x)=(3^(x)+3^(-x))/(2) , then S.T f(x+y)+f(x-y)=2f(x)f(y) .

If f:R-{2/3}rarr R defined by f(x)=(4x+3)/(6x-4) show that f(f(x))=x

" A function "f:R rarr R" satisfies the equation "f(x)f(y)-f(xy)=x+y" and "f(y)>0" ,then "f(x)f^(-1)(x)=

A function f : R rarr defined by f(x) = x^(2) . Determine {y : f(y) = - 1}

A function f:R rarr R^(+) satisfies f(x+y)=f(x)f(y)AA x in R If f'(0)=2 then f'(x)=