Home
Class 11
MATHS
If A1A2..........An is a regular polygon...

If `A_1A_2..........A_n` is a regular polygon. Then the vectors `overline(A_1A_2) + overline(A_2A_3)+.......+overline(A_nA_1)` is equal to (A) `0` (B) `n(vec(A_1A_2))` (C) `n(vec(OA_1))`(O is centre) (D) `(n-1)(vec(A_1A_2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A_1A_2....A_n is a regular polygon. Then the vector vec(A_1A_2)+vec(A_2A_3)+.....vec(A_nA_1) is

Let A_1,A_2,....A_n be the vertices of an n-sided regular polygon such that , 1/(A_1A_2)=1/(A_1A_3)+1/(A_1A_4) . Find the value of n.

Let A_1,A_2,....A_n be the vertices of an n-sided regular polygon such that , 1/(A_1A_2)=1/(A_1A_3)+1/(A_1A_4) . Find the value of n.

If a_1,a_2,.....a_n are in H.P., then the expression a_1a_2 + a_2a_3 + ... + a_(n-1)a_n is equal to

Three vectors overline(a),overline(b) and overline(c) satisfy the condition vec(a)+vec(b)+vec(c)=vec(0) evaluate mu=vec(a).vec(b)+vec(b).vec(c)+vec(c).vec(a) if |vec(a)|=1,|vec(b)|=4 and |vec(c)|=2

If overline(a) and overline(b) are the position vectors of the points (1, -1), (-2, m) and overline(a), overline(b) are collinear, then m=

A_1,A_2,..., A_n are the vertices of a regular plane polygon with n sides and O as its centre. Show that sum_(i=1)^n vec (OA)_i xx vec(OA)_(i+1)=(1-n)(vec (OA)_2 xx vec(OA)_1)

A_1,A_2,..., A_n are the vertices of a regular plane polygon with n sides and O as its centre. Show that sum_(i=1)^n vec (OA)_i xx vec(OA)_(i+1)=(1-n)(vec (OA)_2 xx vec(OA)_1)

A_1,A_2,..., A_n are the vertices of a regular plane polygon with n sides and O as its centre. Show that sum_(i=1)^n vec (OA)_i xx vec(OA)_(i+1)=(1-n)(vec (OA)_2 xx vec(OA)_1)