Home
Class 12
MATHS
" If "u=int(0)^(=)(dx)/(x^(2)+7x^(2)+1)"...

" If "u=int_(0)^(=)(dx)/(x^(2)+7x^(2)+1)" and "v=int_(0)^(=)(x^(2)*dx)/(x^(2)+7x^(2)+1)," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let u=int_(0)^(oo)(dx)/(x^(4)+7x^(2)+1) and v=int_(0)^(x)(x^(2)dx)/(x^(4)+7x^(2)+1) then

int_(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

int_(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

int_(0)^(1)(2-x^(2))/(1+x^(2))dx=

int_(0)^(1)(2x)/((1+x^(2)))dx

int_(0)^(1) (x^2)(1+x^2) dx =

int (x^(2)dx)/(x^(2) + 7x + 12)

int_(0)^(1) (1)/(1+x+2x^(2))dx

int_(0)^(1) (1)/(1+x+2x^(2))dx

" 2."int_(0)^(1)(x^2)/(1+x^(3))dx