Home
Class 12
MATHS
13quad 2tan^(-1)((1)/(3))+tan^(-1)((1)/(...

13quad 2tan^(-1)((1)/(3))+tan^(-1)((1)/(7))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)((1)/(2))+ tan^(-1)((1)/(7))= tan^(-1)((31)/(17))

Prove that tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(=-1)((2)/(9))

prove that tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(-1)((2)/(9))

Prove that tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(-1)((2)/(9))

If "S" is the sum of the first "10" terms of the series tan "^(-1)((1)/(3))+tan^(-1)((1)/(7))+tan^(-1)((1)/(13))+tan^(-1)((1)/(21))+.... ,then "tan(S)" is equal to:

tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=

Solve: tan^(-1)((1)/(2))+tan^(-1)((1)/(3))+tan^(-1)((3)/(5))+tan^(-1)((1)/(7))

Prove that 2 tan^(-1) ((3)/(4)) = tan^(-1) ((24)/(7))

2tan^(-1)((1)/(5))+tan^(-1)((1)/(8))= tan^(-1)((4)/(7))

(tan^(-1)((1)/(3))+tan^(-1)((1)/(7))+tan^(-1)((1)/(13))+......+tan^(-1)((1)/(381)))=(m)/(n) where m,n in N, then find least value of (m+n)