Home
Class 12
MATHS
int0^pi(xtanx)/(secx+cosx)dxi s (pi^2)/...

`int_0^pi(xtanx)/(secx+cosx)dxi s` `(pi^2)/4` (b) `(pi^2)/2` (c) `(3pi^2)/2` (d) `(pi^2)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^pi(xtanx)/(secx+cosx)dxi s (a) (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

int_0^pi(xtanx)/(secx+cosx)dx is (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

int_0^pi (xtanx)/(secx+tanx)dx

int_0^pi((xtanx)/(secx+tanx)) dx

int_(0)^( pi)(x tan x)/(sec x+cos x)dx is (pi^(2))/(4)(b)(pi^(2))/(2)(c)(3 pi^(2))/(2) (d) (pi^(2))/(3)

Prove that : int_0^pi (xtanx)/(secxcosecx)dx =pi^2/4 .

int_(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx i s equal to (pi^2)/6 (b) (pi^2)/3 (c) (pi^2)/8 (d) (3pi^2)/8

int_(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx i s equal to (a) (pi^2)/6 (b) (pi^2)/3 (c) (pi^2)/8 (d) (3pi^2)/8

int_(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx i s equal to (pi^2)/6 (b) (pi^2)/3 (c) (pi^2)/8 (d) (3pi^2)/8

int_(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx is equal to (pi^2)/6 (b) (pi^2)/3 (c) (pi^2)/8 (d) (3pi^2)/8