Home
Class 11
MATHS
If (x+i y)^5=p+i q , then prove that (y+...

If `(x+i y)^5=p+i q ,` then prove that `(y+i x)^5=q+i pdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^p y^q= (x+y)^(p+q) , then prove that dy/dx = y/x

If (x+i y)(p+i q)=(x^2+y^2)i , prove that x=q ,y=pdot

If (x+i y)(p+i q)=(x^2+y^2)i , prove that x=q ,y=pdot

If (x+i y)(p+i q)=(x^2+y^2)i , prove that x=q ,y=pdot

If x^(p)y^(q)=(x+y)^(p+q) , then prove that (dy)/(dx)=(y)/(x) .

If x + i y =(a+i b)/(a-i b), prove that x^2+y^2=1 .

If x+i y=(a+i b)/(a-i b) prove that x^2+y^2=1

If X=[[0, 1], [0, 0]] , then prove that (p I+q X)^m=p^m I+m p^(m-1)q X ,AAp ,q in R ,where I is a two rowed unit matrix and m in N.

If X=[[0, 1], [0, 0]] , then prove that (p I+q X)^m=p^m I+m p^(m-1)q X ,AAp ,q in R ,where I is a two rowed unit matrix and m in N.