Home
Class 11
MATHS
Let a=(1,1,-1), b=(5,-3,-3) and c=(3,-1,...

Let` a=(1,1,-1), b=(5,-3,-3) and c=(3,-1,2)` if `vecr` is collinear with `vecc`and has length `(|veca+vecb|)/2` then `vecr` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca=(1,1,-1), vecb=(5,-3,-3) and vecc=(3,-1,2) . If vecr is collinear with vecc and has length (|veca+vecb|)/(2) , then vecr equals

Let veca=(1,1,-1), vecb=(5,-3,-3) and vecc=(3,-1,2) . If vecr is collinear with vecc and has length (|veca+vecb|)/(2) , then vecr equals

Let veca=(1,1,-1), vecb=(5,-3,-3) and vecc=(3,-1,2) . If vecr is collinear with vecc and has length (|veca+vecb|)/(2) , then vecr equals

Let veca=(1,1,-1), vecb=(5,-3,-3) and vecc=(3,-1,2) . If vecr is collinear with vecc and has length (|veca+vecb|)/(2) , then vecr equals

Let veca=(1,1,-1), vecb=(5,-3,-3) and vecc=(3,-1,2) . If vecr is collinear with vecc and has length (|veca+vecb|)/(2) , then vecr equals

Let veca=(1,1,-1), vecb=(5,-3,-3) and vecc=(3,-1,2) . If vecr is collinear with vecc and has length (|veca+vecb|)/(2) , then vecr equals

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca, vecb, vecc be three non-zero vectors, which are pair-wise non-collinear. If veca+ 3 vecb is collinear with c and vecb + 2 vecc is collinear with veca, then veca + 3 vecb + 6 vecc is :

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to