Home
Class 11
MATHS
If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, ...

If `x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2,` then `x^3y (dy)/(dx)=` (a) `0` (b) `1`(c) `-1` (d) non of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) none of these

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) none of these

If x^2+y^2=t+1/t and x^4+y^4=t^2+1/t^2 then (dy)/(dx)=

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=(a)0(b)1(c)-1(d) non of these

If x^2+y^2= t-1/t and x^4+y^4 = t^2+1/t^2 ,show that , x^3y (dy)/(dx) = 1 .

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then (dy)/(dx)=