Home
Class 12
MATHS
lim(x->0)(sqrt(1+x)-sqrt(1-x))/(2x) is e...

`lim_(x->0)(sqrt(1+x)-sqrt(1-x))/(2x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(2x) is equal to

lim_(x to 0)((x)/(sqrt(1+x)-sqrt(1-x))) is equal to

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

lim_(x rarr 0)((x)/(sqrt(1+x) + sqrt(1-x))) is equal to

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1+x))/(x)

lim_(x rarr0)(sqrt(1-cos2x))/(2x) is equal to =

lim_(x rarr0)(3sqrt(1+x^(2))-4sqrt(1-2x))/(x+x^(2)) is equal to

lim_(x rarr0)(tan x)/(sqrt(1+sin x)-sqrt(1-sin x)) is equal to