Home
Class 12
MATHS
Prove: |1a a^2a^2 1a a a^2 1|=(a^3-1)^2...

Prove: `|1a a^2a^2 1a a a^2 1|=(a^3-1)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: |(1,a, a^2),(a^2, 1,a),( a, a^2, 1)|=(a^3-1)^2

Using properties of determinants, prove the following: |[1,a,a^2],[a^2,1,a],[a,a^2,1]|=(1-a^3)^2

Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

Using properties of determinant, prove that |{:( 1,a,a^(2)),(a^(2) , 1,a),( a,a^(2),1):}|=(a^(3) -1)^(2)

Using properties of determinants,prove the following: det[[1,a,a^(2)a^(2),1,aa,a^(2),1]]=(1-a^(3))^(2)

Prove that: |a^(2)+2a2a+112a+1a+21331|=(a-1)^(3)

Prove that |1alphaalpha^2alphaalpha^2 1alpha^2 1alpha|=-(1-alpha^3)^2dot

Prove that |1alphaalpha^2alphaalpha^2 1alpha^2 1alpha|=-(1-alpha^3)^2dot

Prove: |((a+1)(a+2),(a+2),1 ),((a+2)(a+3),(a+3),1), ((a+3)(a+4) ,(a+4),1) |=-2

Prove that |{: (1,alpha,alpha^2), (alpha,alpha^2, 1),(alpha^2, 1,alpha) :}|=-(1-alpha^3)^2