Home
Class 12
MATHS
y=(tanx)^(logx)+(cosx)^(sinx)...

`y=(tanx)^(logx)+(cosx)^(sinx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=(sinx)^(logx)

y=(sinx)^(cosx)+(cosx)^(sinx)

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].

y=(sinx)^(tanx)+(cosx)^(secx)

u=(sinx)^(tanx) , v=(cosx)^(secx) Find dy//dx . if y=(sinx)^(tanx)+(cosx)^(secx)

Find the derivative: y = (sinx)^(tanx)+(cosx)^(secx)

If y=(sinx)^(tanx)+(cosx)^(secx) , find (dy)/(dx)

If y=(sinx)^(tanx)+(cosx)^(secx) , find (dy)/(dx)

Find the derivative of y = (sinx)^x + (cosx)^(tanx) .

"If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx)/(x)-(sinx)logx}+(sinx)^(tanx).{1+(log sinx)sec^(2)x}.